

Practical-01: Familiarization with IDE

.NET provides a fast and modular platform for creating many different types of applications that run on Windows,

Linux, and macOS. Use Visual Studio Code with the C# and F# extensions to get a powerful editing experience

with C# IntelliSense, F# IntelliSense (smart code completion), and debugging.

Setting up VS Code for .NET development

.NET Coding Pack

To help you set up quickly, you can install the .NET Coding Pack, which includes VS Code, the .NET Software

Development Kit, and essential .NET extensions. The Coding Pack can be used as a clean installation, or to update or repair

an existing development environment.

Install the .NET Coding Pack - Windows

Install the .NET Coding Pack - macOS

Installing extensions

If you are an existing VS Code user, you can also add .NET support by installing the .NET Extension Pack, which includes

these extensions:

• C# for Visual Studio Code

• Ionide for F#

• Jupyter Notebooks

• Polyglot Notebooks

You can also install extensions separately.

Installing the .NET Software Development Kit

If you download the extensions separately, ensure that you also have the .NET SDK on your local environment. The .NET

SDK is a software development environment used for developing .NET applications.

Install the .NET SDK

VB.NET COMPONENTS

VISUAL BASIC IDE contains different components. These components are:

• Tool Bar

• Form Window

• Tool Box

• Property Window

• Project Explorer Window

• Menu Bar

Tool Bar : It provides quick access to commonly used commands in the programming environment. You click a

button on the toolbar to carry out the action represented by that button. The Standard toolbar is displayed when you

start Visual Basic.

https://dotnet.microsoft.com/
https://learn.microsoft.com/visualstudio/ide/visual-csharp-intellisense
https://code.visualstudio.com/docs/languages/dotnet#_setting-up-vs-code-for-net-development
https://code.visualstudio.com/docs/languages/dotnet#_net-coding-pack
https://aka.ms/dotnet-coding-pack-win
https://aka.ms/dotnet-coding-pack-mac
https://code.visualstudio.com/docs/languages/dotnet#_installing-extensions
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-fsharp
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.dotnet-interactive-vscode
https://code.visualstudio.com/docs/languages/dotnet#_installing-the-net-software-development-kit
https://aka.ms/vscDocs/dotnet/download

Form Window: Form objects are the basic building blocks of Visual Basic application. It is the actual

window with which a user interacts at the start of application.

Tool Box: You use special tools, called controls, to add elements of a program user interface to a form. You can find

these resources in the toolbox, which is typically located along the left side of the screen. If the toolbox is not open,

display it by using the Toolbox command on the View menu.

Property Window: With the Properties window, you change the characteristics (property settings) of the user

interface elements on a form. A property setting is a characteristic of a user interface object. For example, you can

change the text displayed by a text box control to a different font, point size, or alignment.

Project Explorer Window: A Visual Basic program consists of several files that are linked together to make the

program run. The Visual Basic 6.0 development environment includes a Project window to help you switch back and

forth between these components as you work on a program.

Menu Bar: It is a horizontal strip that appears across the top of the screen. Menu Bar lists the menus that you

can use in the active window. You can modify the menu bar using the Commands tab of the Customize

dialog box.

Examples of code:

Output:

Explanation:

In the above program, we created a Module that contains the Main() method, here we

printed the "Hello World" message using WriteLine() method of Console class on the

console screen…….

'Program to print "Hello World" in VB.NET.

Module Module1

 Sub Main()

 Console.WriteLine("Hello World")

 Console.ReadLine()

 End Sub

End Module

Hello world

Practical-02: Programming console applications using vb.net covering all

the aspects of vb.net fundamental

A VB.Net program consists of the following modules:

• Namespace declaration
• One or more procedures

• A class or module

• Variables

• The Main procedure
• Comments
• Statements & Expressions

Hello World Program Example in VB.Net

Step 1) Create a new console application.

Step 2) Add the following code:

Step 3) Click the Start button from the toolbar to run it. It should print the following on the console:

Let us discuss the various parts of the above program:

Imports System

Module Module1

 'Prints Hello Guru99

 Sub Main()

Console.WriteLine("Hello

Guru99")

 Console.ReadKey()

 End Sub

End Module

Explanation of Code:

1. This is called the namespace declaration. What we are doing is that we are including a

namespace with the name System into our programming structure. After that, we will be able to
access all the methods that have been defined in that namespace without getting an error.

2. This is called a module declaration. Here, we have declared a module named Module1. VB.Net is

an object-oriented language. Hence we must have a class module in every program. It is inside
this module that you will be able to define the data and methods to be used by your program.

3. This is a comment. To mark it as a comment, we added a single quote (‘) to the beginning of the

sentence. The VB.Net compiler will not process this part. The purpose of comments is to improve

the readability of the code. Use them to explain the meaning of various statements in your code.
Anyone reading through your code will find it easy to understand.

4. A VB.Net module or class can have more than one procedures. It is inside procedures where you

should define your executable code. This means that the procedure will define the class behavior.
A procedure can be a Function, Sub, Get, Set, AddHandler, Operator, RemoveHandler, or

RaiseEvent. In this line, we defined the Main sub-procedure. This marks the entry point in all

VB.Net programs. It defines what the module will do when it is executed.

5. This is where we have specified the behavior of the primary method. The WriteLine method

belongs to the Console class, and it is defined inside the System namespace. Remember this was

imported into the code. This statement makes the program print the text Hello Guru99 on the

console when executed.
6. This line will prevent the screen from closing or exiting soon after the program has been

executed. The screen will pause and wait for the user to perform an action to close it.

7. Closing the main sub-procedure.
8. Ending the module.

Practical-03: Object oriented programming using vb.net covering objects,

inheritance, polymorphism. constructors, static classes, and interfaces.

Visual Basic provides full support for object-oriented programming including encapsulation, inheritance,

and polymorphism.

Classes and objects: The terms class and object are sometimes used interchangeably, but in fact, classes

describe the type of objects, while objects are usable instances of classes. So, the act of creating an object is

called instantiation. Using the blueprint analogy, a class is a blueprint, and an object is a building made from

that blueprint.

To define a class:

Inheritance: Inheritance enables you to create a new class that reuses, extends, and modifies the behavior

that is defined in another class. The class whose members are inherited is called the base class, and the class

that inherits those members is called the derived class. However, all classes in Visual Basic implicitly inherit

from the Object class that supports .NET class hierarchy and provides low-level services to all classes.

First basic program:

Constructors: Constructors are class methods that are executed automatically when an object of a given type is

created. Constructors usually initialize the data members of the new object. A constructor can run only once when a

class is created. Furthermore, the code in the constructor always runs before any other code in a class. However, you

can create multiple constructor overloads in the same way as for any other method.

To define a constructor for a class:

Class SampleClass

End Class

Base class

Class Hello

Public Sub sayHelloWorld()

Console.WriteLine("Hello World”)

End Sub

End Class

Derived class

Class Welcome: Inherits Hello

Public Sub sayWelcome()

Console.WriteLine("Welcome”)

End Sub

End Class

Class CallAllFunctions

Shared Sub Main()

Dim a As Welcome = new Welcome()

a.sayHelloWorld()

a.sayWelcome()

End Sub

End Class

Output:

Hello World

Welcome

https://learn.microsoft.com/en-us/dotnet/api/system.object

Output:

Interfaces: Interfaces, like classes, define a set of properties, methods, and events. But unlike classes,

interfaces do not provide implementation. They are implemented by classes, and defined as separate entities

from classes. An interface represents a contract, in that a class that implements an interface must implement

every aspect of that interface exactly as it is defined.

To define an interface:

Module Module1
 Class User
 Public name, location As String
 ' Default Constructor
 Public Sub New()
 name = "Suresh Dasari"
 location = "Hyderabad"
 End Sub
 End Class
 Sub Main()
 ' The constructor will be called automatically
once the instance of the class created
 Dim user As User = New User()
 Console.WriteLine(user.name)
 Console.WriteLine(user.location)
 Console.WriteLine("Press Enter Key to Exit..")
 Console.ReadLine()
 End Sub
End Module

Module Module1

 Interface ISample

 Sub Fun()

 End Interface

 Structure Sample

 Implements ISample

 Sub Fun() Implements ISample.Fun

 ' Method Implementation

 Console.WriteLine("Fun()

called inside the structure")

 End Sub

 End Structure

 Sub Main()

 Dim S As New Sample()

 S.Fun()

Output:

Polymorphism: Polymorphism is the ability to define a method or property in a set of derived classes

with matching method signatures but provide different implementations and then distinguish the objects'

matching interface from one another at runtime when you call the method on the base class For example:

Fun() called inside the structure

Press any key to continue . . .

Module Module1

Sub Main()

Dim two As New One()

WriteLine(two.add(10))

'calls the function with one argument

WriteLine(two.add(10, 20))

'calls the function with two arguments

WriteLine(two.add(10, 20, 30))

'calls the function with three arguments

End Sub

End Module

Public Class One

Public i, j, k As Integer

Public Function add(ByVal i As Integer) As Integer

'function with one argument

Return i

End Function

Public Function add(ByVal i As Integer, ByVal j As Integer) As Integer

'function with two arguments

Return i + j

End Function

Public Function add(ByVal i As Integer, ByVal j As Integer, ByVal k As Integer) As

Integer

'function with three arguments

Return i + j + k

End Function

Program-04: Programme to illustrate exception handling concepts in VB.NET

An exception is a problem that arises during the execution of a program. An exception is a response
to an exceptional circumstance that arises while a program is running, such as an attempt to divide
by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net
exception handling is built upon four keywords - Try, Catch, Finally and Throw.

• Try − A Try block identifies a block of code for which particular exceptions will be
activated. It's followed by one or more Catch blocks.

• Catch − A program catches an exception with an exception handler at the place in a
program where you want to handle the problem. The Catch keyword indicates the
catching of an exception.

• Finally − The Finally block is used to execute a given set of statements, whether an
exception is thrown or not thrown. For example, if you open a file, it must be closed
whether an exception is raised or not.

• Throw − A program throws an exception when a problem shows up. This is done
using a Throw keyword.

Syntax: Assuming a block will raise an exception, a method catches an exception using a combination of

the Try and Catch keywords. A Try/Catch block is placed around the code that might generate an exception.

Code within a Try/Catch block is referred to as protected code, and the syntax for using Try/Catch looks like

the following −

In the .Net Framework, exceptions are represented by classes. The exception classes in .Net Framework are

mainly directly or indirectly derived from the System.Exception class. Some of the exception classes derived

from the System.Exception class.

Some of the exception classes derived from the System.Exception class are

the System.ApplicationException and System.SystemException classes.

• The System.ApplicationException class supports exceptions generated by application programs. So

the exceptions defined by the programmers should derive from this class.

• The System.SystemException class is the base class for all predefined system exception.

These error handling blocks are implemented using the Try, Catch and Finally keywords. Following is an

example of throwing an exception when dividing by zero condition occurs −

Try
 [tryStatements]
 [Exit Try]
[Catch [exception [As type]] [When expression]
 [catchStatements]
 [Exit Try]]
[Catch ...]
[Finally
 [finallyStatements]]
End Try

When the above code is compiled and executed, it produces the following result −

Throwing Objects:

You can throw an object if it is either directly or indirectly derived from the System.Exception class.

You can use a throw statement in the catch block to throw the present object as −

The following program demonstrates this −

Module exceptionProg
 Sub division(ByVal num1 As Integer, ByVal num2 As Integer)
 Dim result As Integer
 Try
 result = num1 \ num2
 Catch e As DivideByZeroException
 Console.WriteLine("Exception caught: {0}", e)
 Finally
 Console.WriteLine("Result: {0}", result)
 End Try
 End Sub
 Sub Main()
 division(25, 0)
 Console.ReadKey()
 End Sub
End Module

Exception caught: System.DivideByZeroException: Attempted to divide by zero.
at ...
Result: 0

Throw [expression]

Module exceptionProg
 Sub Main()
 Try
 Throw New ApplicationException("A custom
exception _ is being thrown here...")
 Catch e As Exception
 Console.WriteLine(e.Message)
 Finally
 Console.WriteLine("Now inside the Finally
Block")
 End Try
 Console.ReadKey()

Output:

A custom exception is being thrown here...
Now inside the Finally Block

Practical-05: Programme to illustrate use of collections in VB.NET

A collection is a class, so you must declare an instance of the class before you can add elements to that collection.

Collections provide a more flexible way to work with groups of objects. Unlike arrays, the group of objects you work

with can grow and shrink dynamically as the needs of the application change. For some collections, you can assign a

key to any object that you put into the collection so that you can quickly retrieve the object by using the key.

If your collection contains elements of only one data type, you can use one of the classes in

the System.Collections.Generic namespace. A generic collection enforces type safety so that no other data type can be

added to it. When you retrieve an element from a generic collection, you do not have to determine its data type or

convert it.

If the contents of a collection are known in advance, you can use a collection initializer to initialize the

collection. For more information, see Collection Initializers.The following example is the same as the

previous example, except a collection initializer is used to add elements to the collection.

' Create a list of strings.
Dim salmons As New List(Of String)
salmons.Add("chinook")
salmons.Add("coho")
salmons.Add("pink")
salmons.Add("sockeye")

' Iterate through the list.
For Each salmon As String In salmons
 Console.Write(salmon & " ")
Next

'Output: chinook coho pink sockeye

' Create a list of strings by using a
' collection initializer.
Dim salmons As New List(Of String) From
 {"chinook", "coho", "pink",
"sockeye"}

For Each salmon As String In salmons
 Console.Write(salmon & " ")
Next

'Output: chinook coho pink sockeye

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/collection-initializers/

Practical-06: Programme to perform File I/O operations.

File and stream I/O (input/output) refers to the transfer of data either to or from a storage medium. In .NET,

the System.IO namespaces contain types that enable reading and writing, both synchronously and

asynchronously, on data streams and files. These namespaces also contain types that perform compression

and decompression on files, and types that enable communication through pipes and serial ports.

A file is an ordered and named collection of bytes that has persistent storage. When you work with files, you

work with directory paths, disk storage, and file and directory names. In contrast, a stream is a sequence of

bytes that you can use to read from and write to a backing store, which can be one of several storage

mediums (for example, disks or memory). Just as there are several backing stores other than disks, there are

several kinds of streams other than file streams, such as network, memory, and pipe streams.

1. Imports System.IO

2. Module File_Prog

3. Sub Main()

4. ' Create an object FS for the FileStream class along with the name of the text file to perform

 operation like create, read or write.

5. Dim FS As FileStream = New FileStream("myFile.txt", FileMode.OpenOrCreate, FileAcces

s.ReadWrite)

6. Dim c As Integer

7. ' use for loop to read character

8. For c = 0 To 21

9. FS.WriteByte(CByte(c)) 'write byte to the file

10. Next c

11. FS.Position = 0

12. Console.WriteLine("Bytes are:")

13. For c = 0 To 21

14. Console.WriteLine("{0} ", FS.ReadByte()) ' ReadByte() to read byte form the fie.

15. Next c

16. FS.Close() 'Close the file

17. Console.WriteLine(" Press any key to exit...")

18. Console.ReadKey()

19. End Sub

20. End Module

Practical-07: Programming Windows applications using VB.NET covering

all major controls and components Menus, MDI, Event Handling.

MDI Applications

Multiple document interface (MDI) applications permit more than one document to be open at a time. This is

in contrast to single document interface (SDI) applications, which can manipulate only one document at a

time. Visual Studio .NET is an example of an MDI application—many source files and design views can be

open at once. In contrast, Notepad is an example of an SDI application—opening a document closes any

previously opened document.

There is more to MDI applications than their ability to have multiple files open at once. The Microsoft

Windows platform SDK specifies several UI behaviors that MDI applications should implement. The

Windows operating system provides support for these behaviors, and this support is exposed through

Windows Forms as well.

Imports System

Imports System.Windows.Forms

Public Module AppModule

 Public Sub Main()

 Application.Run(New MainForm())

 End Sub

End Module

Public Class MainForm

 Inherits Form

 Public Sub New()

 ' Set the main window caption.

 Text = "My MDI Application"

 ' Set this to be an MDI parent form.

 IsMdiContainer = True

 ' Create a child form.

 Dim myChild As New DocumentForm("My Document", Me)

 myChild.Show

 End Sub

End Class

Public Class DocumentForm

 Inherits Form

 Public Sub New(ByVal name As String, ByVal parent As Form)

 ' Set the document window caption.

 Text = name

 ' Set this to be an MDI child form.

 MdiParent = parent

 End Sub

End Class

Output:

